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Effect of fibre misalignment on fracture 
behaviour of fibre-reinforced composites 
Part II Theoretical modelling 

W. B. H I L L I G *  
Genera/Electric Company, Corporate Research and Development, Schenectady, 
New York 12301, USA 

When a matrix crack encounters a fibre that is inclined relative to the direction of crack opening, 
geometry requires that the fibre flex is bridging between the crack faces. Conversely, the degree 
of flexing is a function of the crack face separation, as well as of (1) the compliance of the 
supporting matrix, (2) the crossing angle, (3) the bundle size, and (4) the shear coupling of the 
fibre to the matrix. At some crack face separation the stress level in the fibre bundle will cause it 
to fail. Other bundles, differing in size and orientation, will fail at other values of the crack 
separation. Such bridging contributes significantly to the resistance of the c6mposite to crack 
propagation and to ultimate failure. The stress on the composite needed to produce a given 
crack face separation is inferred by analysing the forces and displacements involved. The resulting 
model computes stress versus crack-opening behaviour, ultimate strengths, and works of failure. 
Although the crack is assumed to be planar and to extend indefinitely, the model should also 
be applicable to finite cracks. 

Glossary of symbols 
(Terms used and defined locally may not be listed) 
a 

C 

Eb 
Cc 

~f 
Es 
~(~) 
E 
Ec 
Ef 
Em 

f(O) 

F 

Fs 

Fb 

Gm 
h 
hm 
hf 

hmax 

radius of fibre bundle 
= 2"cf/aEf 

critical failure strain of fibre bundle 
bending strain in outer fibre of a bundle 
background strain in composite 
axial strain in fibre 
strain in fibre bundle due to fibre stretching = af 
strain in composite far from crack 
Young's modulus of fibre bundle 
Young's modulus of composite 
Young's modulus of fibre 
Young's modulus of matrix 
number density per unit area of fibres crossing 

crack plane in interval 0 to 0 + dO 
total force exerted by fibre bundle normal to 

crack plane 
component of fibre stretching force normal to 

crack plane 
component of bending force normal to crack 

plane 
shear modulus of matrix 
crack face opening relative to crack mid-point 
matrix contraction contribution to h 
fibre deformation contribution to h 
crack opening at which bridging stress is a 

maximum 

I moment of inertia of fibre bundle 
k fibre stress decay constant in non-slip region 
ko force constant characterizing an elastic 

foundation (see Equation 7) 
L exposed length of bridging fibre bundle (see 

Equation la) 
Lf half-length of a discontinuous fibre 
m, n parameters characterizing degree of mis- 

alignment 
N number of bundles intersecting a unit area of 

crack plane 
Pb bending force normal to bundle axis at crack 

midpoint 
Ps stretching force parallel to bundle axis in crack 

opening 
Q(qb) distribution function describing the degree of 

misalignment 
sf fibre axial tensile stress 
s* fibre tensile failure stress 
S stress supported by totality of bridging fibre 

bundles 
Sma x maximum value of bridging stress 
u fibre displacement relative to matrix 
u' elongation of fibre in crack bridging region 
uooh non-slip contribution to fibre elongation 
U fibre elongation due to crack bridging 
v overall volume fraction of fibres 
vf volume fraction of bundles 
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Vm volume fraction matrix between bundles 
w transverse deflection of bundle at the crack 

mid-point 
x distance along fibre axis, origin defined by con- 

text 
X distance between the end of discontinuous fibre 

and the crack face 
X* threshold (minimum) value of X that results in 

fibre failure instead of complete fibre pullout 
y displacement of fibre normal to its undeflected 

axis 
Z(0) area fraction angular weighting function 
rl tensile strain in fibre relative toappl ied  back- 

ground strain 
1"1" critical value of r I to cause fibre/matrix de- 

bonding 
0 angle at which a fibre bundle crosses the crack 

plane 
X = ( k o / 4 E I )  1/4, a parameter in cantilever beam 

analysis 
vm Poisson's ratio of matrix 

= XL (see Equation 9) 
shear stress 

~. interlaminar shear strength of bundle 
"ca fibre/matrix interfacial shear strength 
zf frictional shear slippage stress at bundle/matrix 

interface 
dO angular deviation of fibre bundle from mean 

orientation of all bundles 
qt angle between symmetry axis and crack plane 

1. I n t r o d u c t i o n  
The companion experimental paper l-l] pointed out 
that the idealized configuration of a parallel alignment 
of reinforcement fibres is not usually achieved in 
actual unidirectional composites. Monofilament- 
reinforced composites are an exception in that the 
interfibre geometry is often controlled by the precise 
placement of the filament. When multifibre strands are 
used to make the composite, although the fibres may 
organize locally into a nearly parallel array, their local 
orientation generally will deviate from the overall 
mean direction of the entire fibre population. Each 
array or bundle in many respects can be viewed as 
.a composite macrofibre. Accordingly, in this paper the 
terms "fibre" and "fibre bundle" are used interchange- 
ably when, as should be clear from the context, the 
entire bundle is treated as if it were a single reinforcing 
fibre. 

The stiffness of the neighbouring filaments prevents 
their "streamlines" from completely filling the space 
immediately ahead and behind the misaligned bundle. 
In a non-porous composite this space must therefore 
be filled by the matrix material. This situation is 
shown schematically in Fig. 1. Because the matrix 
material is typically more compliant than is the com- 
posite itself, such a matrix-rich pocket tends to ac- 
commodate flexure of the fibre as it crosses the gap 
between the crack faces. 

In the case of a polymeric matrices, the elastic 
moduli are generally orders of magnitude less than 
those of the reinforcing fibres or fibre bundles. Hence, 
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Matrix-rich region Misaligned fibre bundle 

Figure 1 Schematic representation Of intersection of a misaligned 
fibre bundle with its neighbours. 

the matrix-rich pockets offer relatively little resistance 
to fibre bending. When the matrix is a metal, yielding 
can enhance the compliance. When the matrix is 
a stiff, non-yielding ceramic or glass, the initial compli- 
ance can only be elastic. Direct observation [1] shows 
that matrix fragmentation can provide the required 
compliance. 

When a matrix crack encounters a fibre that is 
inclined relative to the direction of crack opening, 
geometry requires that the fibre flex in bridging be- 
tween the crack faces. Conversely, the degree of flexing 
depends on the crack face separation, as well as on (1) 
the compliance of the supporting matrix, (2) the cross- 
ing angle, (3) the bundle size, and (4) the shear coup- 
ling of the fibre to the matrix. At some crack face 
separation the axial stress in the fibre bundle will 
reach the failure stress level. Other bundles, which 
differ in size and orientation, will fail at other values of 
the crack separation. Until a given fibre fails, it is able 
to carry load and thus contributes to the force resist- 
ing the crack opening. The combined contributions of 
all bundles intersecting the crack determine the resist- 
ance of the composite to crack face separation. Thus, 
fibre bridging contributes significantly to the resist- 
ance to crack propagation and to the ultimate 
strength. 

Based on the above concept, the present paper 
models this resistance, and in particular, considers (1) 
the effect of misorientation of bundles on filling space, 
(2) the deformations and load transfer associated with 
crack bridging by a single misoriented bundle, and (3) 
the distribution of the fibre orientations. The model is 
general and, in principle, can treat a wide range of 
fibre architectures. The present study relates to fibres 
and matrices that remain fully elastic. The bridging of 
cracks by obliquely oriented fibres when either the 
fibres or the matrix are ductile has been considered 
[2, 3] previously. 

The approach taken in the present model is to 
impose a particular matrix crack face separation, and 
then to determine from geometrical considerations 
how the fibre bundle distorts in bridging the gap 
between the faces. From a detailed consideration of 
the forces and displacements involved, the stress that 
must be applied to the composite in order to produce 
a given crack face separation is inferred. The stress 
depends on the elastic properties of the bundle and the 
"matrix", on the coupling between the bundles and the 
matrix, on the size and orientation of the bundles, and 



on other such factors. The resulting model computes 
stress versus crack-opening behaviour, ultimate 
strengths, and works of failure. Although the crack is 
assumed to be planar and to extend indefinitely, the 
model should be applicable to the consideration of 
finite cracks as well. 

2. O v e r v i e w  o f  t h e  m o d e l  
The model assumes that the reinforcing fibres deviate 
in orientation from their mean direction in a statist- 
ically definable way, and that the fibre may be locally 
grouped into bundles in which neighbouring fibres are 
parallel. A planar matrix crack is postulated to run 
either transversely or parallel to the mean fibre direc- 
tion. The separation of the matrix crack faces in- 
creases with increase of the traction applied to the 
composite normal to the crack plane. As the crack first 
opens, the fibre response is elastic, reversible, and 
linear with respect to the crack opening. Symmetry 
with respect to the reference (unopened) crack plane, 
allows consideration of only that portion of the com- 
posite to one side of the reference plane. 

If the bundle is oriented perpendicular to the crack, 
then pure elongational straining of the bundle will 
result. However, if the bundle is oriented at an angle to 
the crack opening displacement, the bundle will ex- 
perience both an axial and a transverse displacement 
relative to the position where the axis crosses the 
crack mid-plane. That is, the bundle must flex in 
the region between the crack faces. Depending on the 
crack opening, various irreversible stress-induced pro- 
cesses can occur, such as fibre-matrix debonding, fric- 
tional slippage, bundle splitting, or fibre failure. The 
conditions and sequence of these processes depend on 
the size and orientation of the bundles, among such 
other factors as discussed above. At sufficiently large 
crack openings, the bundles will ultimately fail. The 
integrated effect of these various responses of the indi- 
vidual bundles will result in a resisting force per unit 
crack area (i.e. stress) that increases with increasing 
crack face separation to a maximum value and then 
decreases with further separation as the fraction of 
failed bundles increases. The maximum bridging 
stress, the crack opening distance, and the work of 
fracture can be calculated from knowledge of the be- 
haviour of the individual bundles and the statistical 
distributions of their size and orientation. 

The plan of the paper is first to analyze the re- 
sponses of the individual bundles to the opening of the 
matrix crack. Then a statistical description for quan- 
tifying the orientations of the fibre bundles is offered. 
Assuming that the bundle failures are independent 
events, the overall response of the composite is integ- 
rated into a model. The expectations from the model 
are compared with experimental data for the failure 
behaviour of several representative composite sys- 
tems. However, not all of the required basic input data 
is available to provide a priori  estimates of the experi- 
mental failure data. In such cases the data is analysed 
to yield the values of the basic parameters that provide 
the best fit to the experimental data. The results are 
then judged for their reasonableness. 

Section 3.1 considers the stretching and flexural de- 
formations imposed by geometry as the crack faces 
separate in detail. The following Section 3.2 estimates 
the bending force from the amount of flexing that the 
bundle experiences and also calculates the outer fibre 
bending strain and the maximum shear stress in the 
fibre bundle. The bending strain and shear stress can 
be used to predict tensile failure of the outer fibres or 
delamination within the bundle. The tensile compon- 
ent of the bundle response is treated in Section 3.3. 
Fibre-matrix debonding, fibre-matrix frictional 
slippage and pullout are also considered. The flexural 
and the tensile resisting forces for a given bundle are 
combined in Section 3.4 to give the resistance of the 
bundle to the crack opening. 

Because the matrix is stress-free at the crack face, in 
effect the matrix undergoes an elastic contraction 
there. This contraction, along with the stretching and 
bending of the fibre, defines the crack face separation. 
The contraction is considered in 3.5 and Appendix B. 

Statistical representations of the fibre bundle ori- 
entations with respect to the crack plane are treated in 
Section 4. First, distribution functions for the orienta- 
tional randomness of the fibres are offered. These 
distributions are then converted into area-weighted 
distributions for the angles at which the bundles inter- 
sect the fracture plane. The results from Sections 3 and 
4 are combined in Section 5 to give the overall integ- 
rated response. The effects of varying such input para- 
meters as the frictional shear stress and the bond 
strength are given. Finally, the calculated values for 
the stress-displacement data are compared with ex- 
perimental values in Section 5. 

3. Crack bridging by a single misaligned 
bundle 

A simple geometric model is used to define the axial 
and transverse displacements of the bridging fibre. 
These displacements are introduced into appropriate 
mechanical models to deduce the stresses, strains, and 
forces. Depending on the composite, the fibre crossing 
angle can range from nearly grazing incidence to per- 
pendicular. Simple elastic beam theory can be used at 
small fibre crossing angles. Under these conditions the 
lengths of the bridging portions of the fibres are large 
compared with their diameters or the transverse dis- 
placement. At larger crossing angles corrections tak- 
ing into acco .unt the compliance of the matrix in which 
the fibre is embedded become increasingly important, 
and corrections to the simple theory follow. 

For simplicity and convenience we assume that the 
individual fibres have an unique characteristic tensile 
strength value s~'. 

3.1. Geometric requirements 
We consider first the distortion that an inclined bridg- 
ing fibre experiences as the matrix crack opens. Let the 
fibre-reinforced composite have an incipient, not yet 
opened, planar crack, as shown in Fig. 2a. This plane 
is termed the "crack plane" and remains fixed in space 
during crack opening. We assume that the crack opens 
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Crack face Crack face 

Fibre ~ C r a /  / F  b r e ~ / /  __ _ ~, Fibre . . . . . .  2W _1~.._ 

ck plane Crack plane 
(a) (b) (c) 

C' 0 - C M 

(d) 

h 
u 

(e) 
Figure 2 Schematic representation of the geometric distortion experienced by a fibre that is misaligned relative to the direction of the crack 
opening: (a) the situation prior to crack opening; (b) displacements needed to maintain continuity of the fibre following opening of the crack; 
(c) the path followed by a continuous fibre in accommodating the crack opening; (d).details of the geometry prior to the crack opening; 
(e) details of the changes in the geometry in the vicinity of the opened crack. 

normal to the crack plane. That is, there is no lateral 
translation of the crack faces in accord with the as- 
sumption that the fibre misorientations are equally 
probable to either side of the normal to the plane. For 
the purposes of the present discussion let the matrix 
that surrounds the fibre be rigid. Thus, the angle at 
which the fibre enters the crack region remains fixed 
as the crack opens, i.e. the bundle axes on the opposite 
sides of the crack remain parallel. However, because 
the fibre is inclined, the site where the bundle axis 
enters the crack space translates transversely relative 
to where the fibre intersected the incipient crack plane 
prior to crack opening, as is shown schematically in 
Fig. 2b. The transverse translation is given by h. cos 0, 
where 0 is the crossing angle relative to the crack 
plane, and 2h is the total crack opening. However, 
symmetry requires that the intersection of the fibre 
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axis with the crack plane remain fixed in space, as 
illustrated in Fig. 2c. 

How the bundle diameter and the matrix contrac- 
tion enter into the geometric description are shown in 
greater detail in Fig. 2d and e. As traction is applied to 
the composite, the grip ends of the composite translate 
outwards a distance hf relative to the situation had 
cracking not occurred. The distance hf is the in- 
cremental extension of the fibres attributable to the 
matrix crack. In turn the matrix undergoes a relative 
contraction of magnitude hm, because the tensile stress 
applied directly to the matrix at the crack face is 
reduced to zero. Thus, the total crack opening is 
h = h r + h  m. 

The fibre bundle must stretch and flex in order to 
bridge the crack opening. The magnitude of these 
responses can be deduced from geometric consider- 



ations. The fibre geometry prior to crack opening is 
shown in Fig. 2d. The fibre axis intersects the incipient 
crack plane at O; the outer diameters intersect the 
plane at C and C', which are the sites at which the 
fibre emerges from the support provided by the rigid 
matrix. We define the point O to be the origin of 
a Cartesian coordinate system. Let the x axis lie in the 
crack plane and the y axis be normal to the plane. In 
order to accommodate flexure of the bundle, we postu- 
late limited fibre-matrix debonding above the crack 
plane in the vicinity of C' and below the plane at C. As 
the crack opens, the bundle flexes similarly about the 
support points C and C' leading to a bundle shape 
that has a center of symmetry at O. (The restriction 
that the bundle is rigidly supported until it enters the 
crack opening region will be removed later. This also 
relaxes the postulate regarding fibre-matrix 
debonding.) 

In considering the flexure of the bundle, we focus on 
the trajectory of the bundle axis, noting that the fibre 
is supported by the matrix up to points C and C' and 
taking into account the effect of the fibre radius a. 
Thus, when the crack begins to open, the onset of 
flexure occurs at point B on the fibre axis. The coord- 
inates of B are designated [x(B), y(B)] and have the 
values a '  cos e/ tan 0 and a. cos 0, respectively. The 
length of the segment OB is Lo and equals 
x(B)/cos 0 = a/tan 0. 

Now let the crack open the finite distance h, as 
a result of a matrix displacement hm and a fibre dis- 
placement hf, as shown in Fig. 2e. The matrix dis- 
placement causes the onset of flexure to shift laterally 
a distance hm/tan 0 to the position M at the crack face, 
or to position A along the fibre axis. Thus, x(A)= 
x(B) + hm/tan0, where x(A) is the x coordinate of 
both points A and M. 

Prior to crack opening the length L of the segment 
OA was x(A)/cos O, given by 

L = a / tan0 + hm/sin0 (!a) 

and the y coordinate of A = y(A)= x(A)tan0. The 
quantity L is the length of fibre segment that will 
bridge the crack, measured prior to the actual bridg- 
ing. Thus, L serves as the reference length in consider- 
ing the flexural and tensile responses of the fibre. After 
the crack opening the point A does not move laterally. 
However, relative to the crack plane it moves norm- 
ally a distance hr. The point A after crack opening is 
denoted A' and has the coordinates [x(A'), y(A')], 
where x(A') = x(A) and y(A') = y(A) + hr. The seg- 
ment length OA' equals L', and is 

L' = x/(x(A')  2 + y(A')2). (lb) 

flexing of the bundle within the (compliant) 
supporting wall. 

3.2. 1. Fibre crossing at smafl  angles  
In this section, for the purposes of considering the 
fibre bundle as a beam, we define a new Cartesian 
coordinate system lying in the place of the flexure, in 
which origin coincides with the point of fibre crossing 
with the crack plane, the x-axis is parallel to the fibre 
axis far from the crack zone, and y is the transverse 
displacement as a function of distance x from the 
origin. As the crack faces move apart, geometric conti- 
nuity and symmetry require (1) that the trajectory of 
the fibre y(x) be an odd function, (2) that the slope y' 
be a maximum at x -- 0, and (3) that the slope at A', 
where the flexed fibre joins that of the embedded fibre, 
matches that of the embedded misaligned fibre. (As 
discussed above, we assume at least local debonding in 
the vicinity of C between the fibres and the matrix.) 
These conditions are satisfied by 

y = jx - kx 3 (2) 

Such a displacement law is identical to that of two 
opposing cantilever beams that are built into the com- 
posite (assumed rigid) at C in the upper crack face and 
at the symmetrical site on the lower face of the crack. 
Each cantilever terminates at the origin, where each 
loads the other by the amount required by the crack 
opening, as depicted in Fig. 2b. 

Using the cantilever equivalence allows the bending 
force at x = 0 to be estimated from the familiar beam 
equations when the beam (bundle)length is large 
compared with its radius. From Equation 1 it is seen 
that L/a > cote. Thus, for example, at 0 = 3 ~ , 
L/a > 20. The normal force Pb applied at x - - 0  is 
given in terms of the deflection w of the end of the 
beam through 

Pb = 3wE1/L 3 (3) 

where I is the moment of inertia and E is the Young's 
modulus of the bundle parallel to its axis. Inspection 
of the geometry given in Fig. 2b shows that 
w = h cos 0. The component of Pb normal to the crack 
is the bending force component that resists opening of 
the crack. 

The local outer fibre strain eb due to bending is 
given by the product of the bundle radius and the local 
curvature due to bending, i.e. eb = ay". The maximum 
flexure occurs at A', where the outer fibre tensile 
strain is 

I~b . . . .  = 3ahfsin2OcosO/(acosO + h~) 2 (4) 

3.2. Flexural d e f o r m a t i o n  
At shallow crossing angles L/a >> 1, allowing the 
bundle to be modelled as a simple end-loaded canti- 
lever beam. However, as the angle increases, L/a de- 
creases; the elementary beam equations become 
increasingly inaccurate in relating the bending force to 
the transverse displacement. The simple model is 
given first, followed by an analysis that includes 

3.2.2. Compliant  matrix suppor t  o f  fibre 
bund le  

The preceding analysis ignores the effect of the com- 
pliance of the material that surrounds the fibre bundle. 
As already discussed, without some compliance 
and/or debonding, no crack opening is possible with- 
out rupturing or plastically deforming the bundle. The 
problem of a cantilever beam made of one material 
that is built into an elastic "wall" made of a second 
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material appears not to have been solved. However, 
the related problem of a beam resting on an elastic 
foundation has been extensively examined [4], includ- 
ing the case where both the beam and the foundation 
extend from a given point to infinity. In this context 
the term "elastic foundation" means a support such 
that a transverse displacement of the beam results in 
a reaction force that is proportional to the displace- 
ment. The force constant for the foundation can be 
estimated I-5] from its elastic properties. This analysis 
can be utilized by extending the beam a finite distance 
into the free space beyond the foundation, and impos- 
ing a transverse deflection w at the free end. The 
transverse force Pb required to produce that deflection 
and the maximum bending strain in the bundle can 
then be calculated. 

Let the longitudinal and transverse coordinates of 
the axis of the bundle supported by the foundation be 
given by (xl, yl), the corresponding coordinates for 
the free portion of the bundle by (Xo, Yo), and the 
boundary between the two regions by Xx = x0 = 0, i.e. 
Xo and x~ represent absolute distances from the 
boundary. Geometric continuity requires yo(0)= 
ya(0), and dyo/dxo = - d y l / d x l  at Xo = 0. The ap- 
plication of the force Pb at the free end, where Xo = L, 
imposes a bending moment PbL, and a shear force Pb 
in the beam at the boundary, i.e. 

y'~ (0) = PbL/EI  (5a) 

and 
y'~"(O) = Pb/EI (5b) 

where the primes indicate differentiation with respect 
to x. 

The general solutions for yo(xo) and yx(x~) are 

Yo = P(L - Xo)3/6EI + blxo + b2 (6a) 

and 

Yl = e x p ( - L x z ) [ c l c o s k x l  + czs inZxl]  (6b) 

where bl, b2, c~, c2 are constants to be determined. 
The quantity ~ = (ko/4EI)1/4; ko is approximately 
given in terms of the shear modulus of the matrix G m 

When 0 approaches ~t/2, L and hence g both 
approach 0. It follows from Equation 10 that the ratio 
P/w remains finite. However, because w = h cos 0, it 
also follows that w and P vanish together. Thus, as 
0 approaches either 0 or 7r/2, the bending force 
vanishes. 

The maximum curvature and bending strain occurs 
at the boundary, and using the Bernoulli-Euler 
relationship, this strain as is readily calculated from 
Equation 10 through 

~b = ay'(O) = PbaL/EI  ( l la)  

Recalling the expressions for L and w, and making use 
of Equation la, at the limit of large L the expression 
for eb is seen to reduce to Equation 3. However, at 
small L ~b tends to 

eb = ahf(acosO + hrn)/[(1 + ~)L3tan0] ( l ib)  

and becomes zero at the limit 0 = re/2. Differentiating 
with respect to {, shows that au is a maximum when, 

= 0.5979, and 

ab, m,x = O.0326(3koaw/ElX z) (llc) 

The dependence Ofab on 0 is given in Fig. 3 for the case 
of a representative composite reinforced with 50 vol- 
ume per cent fibre bundles in which the fibre content is 
80 volume per cent. The plot shows that the maximum 
bending (tensile) strain depends approximately log- 
arithmically on the E/G stiffness ratio. When this ratio 
equals 0.1, and the crack opening equals the bundle 
radius, the maximum strain exceeds 0.1 and occurs at 
a crossing angle of about 26 ~ 

3.2.3.  B u n d l e  in tegr i ty  
During flexure fibre bundles may break up into 
subbundles or individual fibres as a result of shear 
debonding failure. We postulate the existence of 
a threshold shear stress z* for initiating such 
intrabundle delamination. Beam theory gives the 
shear stress on the beam axis to be a maximum, which 
is 

by �9 = Pba2/21 (12) 
ko = (~/2)2Gm/0.95(1 - Vm) (7) 

Introducing these conditions into the above rela- 
tionships leads to 

yo(x) = ~{Lx2/2 -- x3/6 q- r(1 q- 2{)/2X2]x 

+ (1 + ~)/2;~ s } (8at 0,1 

yl(x) = (~/~.3)exp(--Lx)[cos~.x 

+ {(cos ;~x -- sin Xx)] (8b) ~f 

where the subscripts to x have been dropped, x 
= P/E1, and { = ~.L. Noting that yo(L)= w, the 

displacement at the boundary and the transverse force 
are given by 

yl(0) = 13(1 + ~)/~3 (9) 
and 

Pb/W = 3 k o L / [ 4 ~  4 + 6~2(1 + 2~) 

+ 6~(1 + g)] 

0 1z/2 Crossing angle, 0 

Figure 3 Dependence of the bending strain EB on the bundle 
(10) crossing angle 0. 
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From Equations 10 and 12 the condition for bundle 
delamination in terms of crack opening and 0 can be 
determined. If delamination occurs, each half in effect 
becomes a new bundle, requiring that I be redeter- 
mined. Other shearing or buckling mode failures are 
possible, but are not considered in the present model. 

3.3. Tens i le  d e f o r m a t i o n  
The crack opening h is treated as an independent 
parameter and is the sum of the fibre extension hf and 
the matrix contraction h m relative to the geometry 
prior to matrix cracking. If the entire fibre remains 
coherent with the matrix, the fibre displacement is 
purely elastic and reversible. However, once the fibre 
is debonded from the matrix, the debonded portions 
of the fibre can slide relative to the matrix. The resist- 
ance to such sliding can be characterized by a fric- 
tional shear stress rf, assumed for simplicity to have 
a fixed value. Recall that the fibres may be oriented at 
any angle 0 relative to the crack plane, and that the 
applied stress is normal to the crack plane. The prob- 
lem is to determine the fibre axial stress in the crack 
bridge region using known values of h, zf, and other 
physical and elastic properties. 

As the crack faces open, the fibre bundles must bend 
as well as elongate. The elongation can be determined 
from the increase in the line integral along the fibre 
axis trajectory as the crack opens. Compliance of the 
surrounding matrix material partially relaxes the 
severity of the bending required as the fibre bundle 
bridges the gap between the crack faces. In principle, 
the amount  of stretching is also reduced. However, 
line integration over the bent region, using the lateral 
displacements given by Equations 8a and 8b, shows 
that reduction of the axial elongation is negligible. 

Hence, the elongation can be adequately and more 
simply approximated by means of the constructions 
shown in Fig. 2d and e, which schematically compare 
the bundle geometry before and after the crack has 
opened an amount h = he + hm. Equations la and lb, 
respectively, give the length L of a given segment of the 
bundle prior to crack face separation, with the length 
L' of the fibre in the unstressed state, and Equation lb 
gives the length L'  of the same segment after crack 
opening. Thus, the fibre elongation U is L' - L, allow- 
ing U to be calculated with an error of less than 20% 
relative to results from line integration by 

U ~ hfsin0 (13) 

provided that (hf/a) < 1/2. 
This geometrically prescribed elongation must be 

accommodated by the amount of incremental stretch- 
ing u' of the fibre in the crack-bridging region caused 
by the straining of the fibre, and by u, the differential 
displacement of the fibre relative to the matrix within 
the composite. That is, U = u ' +  u. The term u' is 
relatively more important during the initial stages of 
crack opening, but can be neglected with little error 
once substantial fibre-matrix slippage occurs. 

It is given by 

u' = Lrl(0) (14) 

where r I (x) including q (0) is defined by 

q ( X )  = I~f(X) - -  I~f(O0) (15)  

in which x is the axial distance along the fibre meas- 
ured from the crack face, el(x) is the fibre strain at x, 
and af(oo) is the fibre strain far from the influence of 
the crack. The term u depends on how the fibre is 
coupled to the matrix. 

As is discussed more fully in Appendix A, the inabil- 
ity of the matrix to carry stress across the crack faces 
requires that the bridging fibres carry an increased 
tensile load in that region. This excess fibre stress is 
ultimately transferred back to the matrix within the 
composite at a rate that depends on the fibre-matrix 
coupling. An excess fibre strain, given by r I (x), paral- 
lels the excess stress, and causes the fibre to elongate 
relative to the case when the composite remains un- 
cracked. It is this differential elongation that allows 
the fibre to bridge the gap between the crack faces. 
The interrelations between the coupling, the crack 
opening, and the fibre stress s f (x  = 0) are developed 
next. 

3.3. 1 Fibre bundle well-bonded to the matrix 
When the fibre is coherently bonded to the matrix, the 
fibre strain decays exponentially with distance from 
the crack face. The decay constant k is discussed in 
Appendix A, and is a function of the fibre volume 
fraction, of the elastic properties of the fibre bundle 
and the matrix, and of the bundle radius. In the 
absence of fibre-matrix slippage to the matrix, when 
the fibre is coherently coupled, the fibre extension 
Uooh is (see Equation A10b) 

Uoo. = q ( 0 ) / k  (16) 

and the shear stress acting on the fibre at x = 0 is 

"~(0) = E q ( O ) a k / 2  (17) 

For  an inclined fibre af( 0o ) is the strain G in the 
composite, far from the crack, resolved parallel to the 
fibre axis, i.e. 

~f(oo) = 8~sin20 (18) 

where ac = S/Ec,  S is the stress applied to the com- 
posite normal to the crack plane, and Ec is the corres- 
ponding Young's modulus of the composite. 

In the present case u = U~ We evaluate 
U = u' + u by introducing the expressions for the sep- 
arate terms to yield 

rl(0) -- h f s i n O / ( L  + 1/k). (19) 

The stress sf(0)= Ear(0) carried by the fibre bridge 
can now be determined in terms of hf and ec. 

When the calculated value of rl(0 ) is such that 
z(0) > ZO, then fibre debonding and frictional sliding 
can occur, ra being the critical shear stress for 
fibre-matrix debonding. This critical shear stress has 
been shown [6] to be uniquely related to the surface 
work of debonding. It follows from Equation 17 that 
debonding can commence when q (0) in turns reaches 
a critical value r I* given by 

rl* = 2"ra/akE (20) 
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Once substantial fibre-matrix slippage occurs, 
Ur makes a minor contribution to U. 

3 . 3 . 2 .  F r i c t i o n a l  c o u p f i n g  b e t w e e n  f i b r e  

b u n d l e  a n d  m a t r i x  

The frictional coupling between the fibre and its sur- 
roundings is characterized by a resisting frictional 
shear stress zf, which we assume to be constant. The 
strain in the fibre as a function of distance x from the 
crack face is 

ef(x) = gf(O) - Cx (21a) 

in which C is an abbreviation C defined by 

C = 2zf/aEf (21b) 

The corresponding stress sf(x) is Efee(x). The fibre 
displacement u at the crack face when debonding can 
occur is given by Equation A15, namely 

U = ( 1 1 2 ( 0 )  - -  r1"2)/2C -k- Ueoh (21C) 

w e  again set U = u ' +  u and use Equations 13, 14, 
and 16 to yield the quadratic expression 

q2(0) + a ~ r  1 ( 0 ) -  B1 = 0 (22) 

where Bt = 2Chfsin0 + q . 2 _  2Crl*/k and A I =  
2CL. An expression for the exponential elastic strain 
decay constant k has been given by Budianski et al. 
[7] (see Appendix A, Equations A6a-c) in terms of the 
fibre radius, fibre volume fraction, and the elastic 
constants of the constituents. An alternative formula- 
tion is offered in Appendix A, Equations A9a-c. 

For  convenience in presenting the solution to Equa- 
tion 22, we express the various input factors in terms 
of the following dimensionless parameters: 0~ = Zf/ ' l~d;  
[~ = hm/hf; 7 = "Cd/Ef; r = hf/a. Some quantities are 
experimentally known; in principle all are measurable. 

The solution for 1-1(0) when r < 2y/k  2 sin0 is given 
by setting L = 0 in Equation 19. For  larger values o f r  

no = [ * o  2 + ~ t  + ~2 ]  ~/2 - ~o (23) 

~ = (,y/kF(1 - 2~) 

and XI/2 = 4c~7co sin 0. 

When q(0) >> q*, it follows from Equation 21c that 

q(0) = [~,cosinz + (y/ak)2] 112 (24) 

In these expressions q(0) increases monotonically 
from zero when 0 = 0 to a limiting value as 0 increases 
to rt/2. Fig. 4a and b shows the dependence of q (0) on 
0 using input Gm/Ef ratios of 0.003 and 0.1 as being 
representative of polymeric and ceramic matrix com- 
posites, respectively. For  both examples we set vf 
equal to 0.5, and ~ to 0.1 or less (sliding friction cannot 
exceed the initial debond shear stress). The debond 
shear stress za is estimated to range from 0.001 to 0.1 
of the matrix shear modulus for both polymeric and 
ceramic systems, and 13 to be in the approximate ratio 
of El~Era, namely 30 and 1 for the polymeric and 
ceramic systems, respectively. The value selected for 
r is 0.1, which from Equations 17 and 19 leads to 
values of r(0) that far exceed the za values predicted to 
initiate debonding in either system when 0 = re/2. 
Fibres oriented normal to the crack debond prior to 
those inclined to the crack. 

Fig. 4a and b shows that decreasing either za or zf, 
while holding the other shear constant fixed, results in 
a decrease of r I(0) for all values of 0. However, the 
shape of the curve can vary considerably depending 
on other parameters. The effect of increasing v is to 
increase k and in turn to decrease q (0), as shown in 
Fig. 5. The magnitude of the effect varies with the 
values of rd and ~f. Although trends can be qualitat- 
ively discerned, caution is required, because the 
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Figure 4 The effect of the fibre debond shear stress xe and the frictional shear stress ~f on the bundle excess tensile strain 1](0) in the crack 
bridging region relative to the bundle strain far from the crack as a function of fibre crossing angle 0 when (a) the matrix is much  more 
compliant than the fibre, and (b) the matrix is comparable in stiffness to the fibre. 
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Figure 5 The effect of fibre volume fraction vf and the frictional 
shear stress zf on the bundle excess tensile strain q(0) in the crack 
bridging region relative to the bundle strain far from the crack as 
a function of fibre crossing angle 0 for fibre when the matrix is 
comparable in stiffness to the fibre. 

relative importance of the various parameters is com- 
plicated by the overall composite characteristics and 
the applied stress. 

3.3.3. Discontinuous fibre bundles frictionally 
coupled to matrix 

The above model can be extended to include discon- 
tinuous reinforcing fibres. The case of discontinuous 
unidirectional fibres oriented parallel to the direction 
of the applied tensile stress has been treated by 
Cooper [8]. The discussion that follows extends that 
treatment to randomly oriented fibres. A more de- 
tailed analysis is given in Appendix A3. 

We consider that (1) the discontinuous fibres have 
the same length 2Lf, and (2) that the ends of the fibres 
are located at random distances from the crack plane. 
(All lengths and distances here and below are meas- 
ured along the fibre.) Thus, that end of a fibre that is 
closest to the crack lies at a distance Lf, i from the 
crack plane, where 0 < Lf,~ < Lf. The tensile stress in 
the crack-opening region depends On the fibre orienta- 
tion, on the distance L that the fibre is exposed in that 
region, and on distance X~ over which the fibre is 
embedded in the matrix. Thus, X~ is simply Lf, i -- L, 
as is evident from Fig. 6. Finally, the distance along 
which the fibre is only frictionally coupled to the 
matrix is Ls, where Ls _< L. 

In bridging the gap between the crack faces, the 
discontinuous fibres (bundles) stretch in response to 
the applied stress. They can also slide out of their 
"sockets", providing that their embedded length X~ is 
less than a critical value X*. The quantity X* is such 
that stress in the crack-opening region just fails to 
cause fibre failure. This condition is satisfied when 

X *  <~ s * a / 2 t f  --  [~3(ct3) - -  1 ] ' 3 / C  (25)  

I 

t' I I 
I 
I 

~ - L  M a t r i x  

F ibre 
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~.... x, 

Figure 6 Schematic diagram of a partially debonded, discontinu- 
ous, crack-bridging fibre that defines the various parameters. 

from Equations 20 and 21; s~' is the fibre failure stress. 
Should Xi lie farther than X* from the crack face, 

then the situation will be essentially the same as if the 
fibre were continuous. Equation 24 can then be used 
to calculate q (0), and in turn sf(0). For  values of Xi less 
than X*, the pullout stress Spo is given by 

Spo : E f r g ( o o )  Jr- q * ]  -k- C E f X  i (26) 

The analysis of the bending strains is the same for 
continuous fibres (see 3.2). Obviously, once fibres have 
been totally pulled out, their stretching and bending 
contributions to the bridging stress vanish. 

3.3.3.1. Fibre failure precluded. Fibre failure is pre- 
cluded if Xi is so small that the fibre stress at the crack 
is less than the fibre tensile strength s*, i.e. ifXi < X*, 
and X* = s* a/2zf. For fibres meeting this criterion, as 
the crack opens the fibres become increasingly ex- 
posed over a distance L in the crack opening region, as 
shown in Fig. 5. Any fibres for which Lf,i < L would 
be completely extracted. The fibre stress sf(0) at the 
crack face is given by 2~fXi/a, as long as Xi remains 
less than the critical value X*. For  larger values of Xi 
fibre failure will occur in the crack bridging region. 

For a random distribution of fibre end positions, 
the mean fibre stress at the crack face is 

(sf(O)) = [1 - a s f ( O , X ) / 4 T f L f  - -  L / L f ] s f ( O , X )  

(27) 

where sf(0, X) is the fibre tensile stress at x = 0, when 
the maximum distance between the ends of bridging 
fibres and the crack plane is X. 

As the crack opens, L increases, and X~ decreases. 
The point is finally reached where, for those fibres for 
which X~ < X*, further crack opening causes a de- 
crease of sf(0). In this regime the mean fibre stress is 
given by 

( S f ( 0 ) )  = Tf (Lf  - -  L)2/aLf (28) 

Thus, as the crack opens the resisting force goes 
through a maximum and vanishes when all of the 
fibres have been pulled out. 

3.3.3.2. Fibre failure possible in addition to pullout. If 
the fibres are longer than 2X*, some will be situated 

9 0 7  



such that even the closest end is farther than X* from 
the crack face. Those fibres will fail in tension prior to 
pullout. For crack openings insufficient to develop 
stress levels that will cause fibre failure, the situation is 
the same as that discussed for the previous case. How- 
e~)er, when the calculated sf(0) exceeds the fibre 
strength s~', then 

(sf(O)) = (L* + s~a/2~f -- L)2~f/a (29) 

where L* is the value of L when sf(O) = s*. In all cases 
the effective mean strain (ee) is simply ( s f ( O ) ) / E f .  

3.4. Load t ransfer  ac ross  crack 
Fibre bundle failure is postulated to occur where the 
total strain caused by stretching plus flexing is 
greatest. The bending force has been given by Equa- 
tion 10. The corresponding stretching force is related 
to gf or ( e f )  (see Equations 20-24) by 

Ps = xa2Eef (30) 

The total force F that the bundle supports in bridg- 
ing the crack is the sum of the bending and stretching 
forces normal to the crack plane and is simply 

F = PbCOS0 + Pssin0 = F b + Fs (31) 

which defines the normal forces Fb and F,, and where 
Pb and P, are given by Equation 30 and Equations 31, 
6, or 12. If the failure strain e* of the fibre bundles is 
a fixed material property, then 

~b + ~ = e* (32) 

defines the condition for the failure of a single fibre, or 
for failure of the outer fibre of a fibre bundle. These 
latter two equations provide the basis for calculating 
the maximum crack opening and the ultimate force 
that a bundle can carry. 

A more realistic treatment, beyond the scope of the 
present paper, would consider the effect of flaw distri- 
bution on the failure strain and failure sites. 

3.5. Estimation of matrix displacement relative 
to fibre extension 

Both displacements hf and hm enter into the expres- 
sions for the fibre bending and axial strains. In order 
to compute those strains from a knowledge of hf, it is 
necessary to relate hm to hf. Thus far, hf and h= have 
been treated as independent variables. In the case .of 
an ideal unidirectional composite having the rein- 
forcement oriented normal to the crack, hm can be 
related to hf through the requirement for static equi- 
librium (see Appendix B, Equation B7) by 

h m = ( v f E f ) / ( # m E m ) h  f (33) 

This ideal unidirectional model assumes that the 
fibre and matrix displacement are normal to the plane 
of the initial matrix crack and as the crack opens, 
the faces remain planar and parallel. However, when 
the individual bundles are not normal to the crack 
plane, the situation is more complicated. 

Appendix B offers the following expression as an 
estimate of the dependence of h= on hf when the fibres 
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cross the fracture plane over a statistically defined 
range of values 

0 L v ~ -  m 1 z(0)sin 20d0 

(hm/hf>Ave = ~;/2 Z(0)d(0) (34) 

in which Ec(0) is the dependence of the Young's 
modulus of a unidirectional composite on the angle 
0 between the fibres and the applied tensile stress. The 
term Z(0) is the weighting function for the area frac- 
tion of bundles crossing a unit area of crack surface at 
the angle 0, as given by Equation 37. Inasmuch as hf is 
an independent variable, the above equation allows h= 
and h to be determined. The composite modulus Ec(0) 
can be estimated [9] from the properties of the matrix 
and the reinforcement. 

4. D i s t r ibut ion  o f  f ibre  bundle  
o r i e n t a t i o n s  

One way to characterize a given fibre bundle is to 
specify its radius a and its misorientation angle qb rela- 
tive to a vector representing the mean direction of all 
bundles. The vector is assumed to be an axis of rota- 
tional symmetry for the bundle deviations from per- 
fect alignment. The distribution of the values of a and 
qb can be used to characterize the composite. However, 
it is the distribution of O (i.e. the angle that the bundles 
make in crossing the crack plane) that is of present 
major interest. For convenience, although not neces- 
sary, we treat the bundles as if they all had the same 
cross-sectional area given by the average value. 

For determining parametric dependencies it is con- 
venient to begin by specifying the misalignment prob- 
ability Q(qb) to calculate the number density of fibres 
crossing the crack plane in an angular interval dO 
centered around 0. However, knowledge of Q(qb) is not 
absolutely essential, because this number density f(0) 
is experimentally measurable. Nevertheless, insight is 
gained by relating the crossing angles 0 back to the 
underlying misalignment qb angles. The applied stress 
on the composite, which is balanced by the force per 
unit area supported by the bridging fibres, is deter- 
mined by integrating f(0) times (the force carried per 
bundle normal to the crack) with respect to e. A more 
complete discussion is found in Appendix C. 

4.1. Fibre misalignment functions 
Let us consider the spatial orientations of the fibre 
bundles in terms of a stereographic representation. Let 
qb be the angular deviation of a given fibre bundle from 
the unit vector corresponding to the mean bundle 
direction. The .vector has its origin at the center of 
a sphere of unit radius. Where the vector intersects the 
surface of the sphere defines the reference point. Sim- 
ilarly, a misaligned fibre is represented by a similar 
vector, but oriented at an angle qb. Its intersection with 
the surface produces another point on the sphere. 
Other fibres will generate other points. We assume 
that the pattern of points is symmetrical around the 
reference point, that the density of points per unit 
surface area is a continuous function Q(qb) of angular 



distance from the reference point, and that the cross- 
sectional area of matrix associated with a fibre is 
independent of its orientation. 

If Q(00) has a maximum corresponding to the mean 
fibre direction (i.e. 00 = 0), then the distribution is 
prolate or quasi-unidirectional. If Q has a maximum 
at qb = rt/2, then the distribution is oblate or quasi- 
2-dimensionally random. If Q = constant for all 
00 values, then the distribution is 3-dimensionally ran- 
dom. Many other distributions are possible. 

We next define ~ as the angle which the unit vector 
representing the axis of fibre symmetry makes with 
respect to the crack plane and 0 as the angle that 
a particular fibre makes relative to the crack plane. 
The angle ~ in combination with Q(00) fixes f(0). When 
t~ = 0, the axis of symmetry lies in the crack plane; for 
a prolate distribution this corresponds to a splitting 
mode of fracture, but for an oblate distribution this 
corresponds to transverse fracture. When ~ = x/2, the 
fracture modes are the reverse, namely the prolate 
distribution experiences transverse fracture, and the 
oblate distribution fails by splitting. For ~ -- 0 or ~/2 
the transformation between the (2(00) and the f(0) 
function is relatively simple. Experimentally, these 

values are the most likely values to be encountered. 
Arbitrary values of ~ complicate the translation from 
Q t o f a n d  are not included here. However, the results 
could be of interest for examining the stability of the 
splitting and transverse modes. 

When the symmetry axis is perpendicular to the 
crack plane, i.e. when ~ -- x/2, the misalignment angle 
00 equals (rt/2--0). For this case it c a n  be readily 
shown that 

f(O) = kQ(n/2 - 0)cos0 (35) 

When ~ = 0, then f(0) is given by 

[~/2 Q(00) sin 00d00 
f(0) c~ 0L/2_0 ~/cos20 - cos2r (36) 

where in either case if Q is expressed purely as a trig- 
onometric factor, the constant K is needed to relate 
f(0)  to the density of fibres. Correspondingly, the 
areal distribution function Z(0) is given by 

Z(O) = 7ta2f(O)/sinO (37) 

If N is the total number of fibres crossing a unit area 
of the crack plane, then 

Inasmuch as 

f f /Zf(O)dO = N (38) 

]/2Z(O)dO = v (39) 

where v is the area fraction occupied by fibres per unit 
area of crack plane. Thus, the number of fibres per unit 
area crossing at 0 -T- d0/2 is given by F(0) as 

V ( 0 ) =  vf(O)/~f2Z(O)dO (40) 

4.2 Relations between specific axial 
and planar crossing distributions 

We now discuss various types of representations of 
Q(00), as shown schematically in Fig. 7, and their rela- 
tion to f(0). If a prolate distribution extends over 
a wide range of angles, the form Q(00)= COSta00 is 
convenient for performing the above integrations. The 
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effective range of the distribution can be narrowed by 
increasing m. The angle d~0.5, where the magnitude of 
Q(qb) is half its maximum value, is given by 
qbo.5 ~ (rc/3)/~/m. To reduce qb0. s to rt/6 requires 
m ~ 5, and to reduce it to re/12 requires m ~ 20. 

Similarly, Q(qb) = (i - cos qb) m can be conveniently 
used to describe a broad oblate distribution. In this 
case qbo.5 ~ (re/2) - rc/6rn, which shows that this distri- 
bution narrows more rapidly as m increases relative to 
the above distribution. Alternatively, spherical har- 
monics can be used [10]. 

For  the above cases the Q(~) and the corresponding 
f(0)  distributions are given in Tables I and II. Con- 
stant multiplying factors have been omitted. 

5. Total  response of composi te  
As the crack first opens, the separation is accom- 
modated by purely reversible elastic deformation. 
Further separation causes frictional slippage of the 
fibre bundle relative to the matrix, bundle splitting, or 
bundle failure. Continuous bundles oriented approx- 
imately normal to the crack can support a load in that 
direction that approaches their breaking strength. 
Pullout may intervene if the bundles are discontinu- 
ous, or if the bundle failure is assumed to occur at 
random flaws. At the other extreme, bundles oriented 
nearly parallel to the fracture plane can remain bridg- 
ing over large crack openings, but the force they exert 
normal to the crack plane is accordingly less. 

Progressive failure of the constituent bundles pro- 
ceeds via various essentially independent processes, 
each of which depends on a multiplicity of physical 
properties. Hence, it is not feasible to combine these 
elements into an analytic model. Nevertheless, the 

various factors discussed above can be integrated into 
a computer model, taking as inputs: (a) fibre, matrix, 
and composite elastic properties; (b) diameter, aspect 
ratio, and volume fraction of the fibre bundles; (c) the 
degree of misorientation of the bundles; (d) the bond 
shear strength and the frictional shear coupling be- 
tween the bundles (or fibres) and the matrix; (e) the 
interlaminar shear strength of the fibre bundles. The 
output of interest is the mean force exerted by the 
bridging fibres and the external work expended as 
a function of crack-face separation. The overall model 
can be used for parametric studies, guidance of 
materials development, or estimates of composite be- 
haviour, or conversely, to estimate the values of the 
underlying controlling parameters from experimental 
data for the composite. 

Calculated results of the relationship between the 
bridging stress and the crack-opening displacement 
are shown below in Section 5.1 using input parameter 
values appropriate for some representative com- 
posites. The following Section 5.2 presents experi- 
mental data that reflects such a relationship and then 
examines the agreement between the observations and 
the results obtained from the model. 

In characterizing a given composite, many para- 
meters, such as the elastic constants and volume frac- 
tions of the constituents, may be accurately known. 
Others, such as the bundle and fibre diameters, the 
fibre strain-to-fail, and the degree of misalignment 
may also be known or are measurable or estimable. 
Other information, such as the frictional shear stress 
may be unknown. Even though the  complete data 
may not be known with precision, the model can be 
tested by calculating such quantities as the maximum 
bridging stress S . . . .  the crack opening h m a  x when the 

T A B L E  I D i s t r i b u t i o n  f u n c t i o n  r e l a t i o n s h i p s  w h e n  Q ( ~ )  is t r u n c a t e d  

C a s e  Q(O)  T y p e  qJ F a i l u r e  m o d e  f ( 0 )  

1 = 1, qb < ~ *  P r o l a t e  rt /2 T r a n s v e r s e  

= 0 , ~ > ~ *  

2 = 0,  qb > d~* P r o l a t e  0 S p l i t t i n g  

3 = 1, d~ > ~ *  O b l a t e  n / 2  S p l i t t i n g  

= 0 , ~ < ~ *  

4 = 0,  ~ < dp* O b l a t e  0 T r a n s v e r s e  

= c o s 0 ,  0 > n / 2  - d?* 

= O, 0 < re~2 - ?p* 

s in  qb* 

= a r c s i n  ( . . . . .  ) 

c o s  0 
x c o s  0, 0 > (~/2 - e ) *  

= 0, 0 < ~ / 2 -  ~ *  

= c o s 0 ,  0 < r t /2 - O* 

= 0,  0 > 7t/2 - qb* 

COS (~* 
= a r c s i n  ( . . . . .  ) 

c o s  0 
x c o s 0 ,  O > re/2 - d?* 

= O, 0 < ~/2 - qb* 

T A B L E  I I  D i s t r i b u t i o n  f u n c t i o n  r e l a t i o n s h i p s  w h e n  Q ( ~ )  is c o n t i n u o u s  

C a s e  Q(qb) T y p e  ~ F a i l u r e  m o d e  f ( 0 )  

5 = cosm ~ P r o l a t e  ~ / 2  T r a n s v e r s e  

6 = c o s  m qb P r o l a t e  0 S p l i t t i n g  

7 = (1 - c o s  ~)m O b l a t e  7z/2 S p l i t t i n g  
8 = (1 - c o s  I~)) m O b l a t e  0 T r a n s v e r s e  

9 = 1, 0 < ~ < n / 2  I s o t r o p i c  N A  N A  

= c o s  0 s inm 0 
= c o s  m + 1 0 

= c o s 0 ( 1  - -  s i n 0 )  m 

1 - ( 1  - c o s 0 )  m+1 

= c o s  0, 0 < 0 < rt/2 
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stress reaches S . . . .  and the work of fracture by vary- 
ing those parameters for which the uncertainty is 
greatest. Those values giving the best fit with the 
experimental data can then be assessed as to their 
reasonableness. 

5.1. Results of parametric variations 
The calculated effect of the various parameters on the 
dependence of the bridging stress on displacement of 
the gripped end of the tensile specimen is given for the 
example of an experimental continuous carbon 
fibre/glass matrix composite. The fibre and the glass 
matrix have Young's moduli of 320 and 90 GPa, re- 
spectively. The fibres have a mean radius of 4 tam and 
their volume fraction is 0.48. Experimental micro- 
scopic examination revealed that the fibres are 
gathered into bundles ~ 65 ~tm in radius.  Because 
there is little free matrix separating the bundles, the 
volume fraction of fibres in the bundles is assumed to 
be 0.5. These values are fixed in all of the trial cases 
considered below. 

The parameters investigated include the fibre-fail- 
ure strain, the fibre-orientation distribution, the criti- 
cal shear stress for debonding, and the frictional shear 
stress. Stress-displacement results are given for both 
splitting and transverse failure modes. However, the 
displacement for the transverse failure only considers 
the elongation of the fibres. It does not yet include the 
effect of withdrawing the broken fibres from their 
'sockets' when fibre failure occurs within the matrix. 
Hence, the transverse failure curves provide informa- 
tion regarding the displacement at which failures 
occur, but do not represent the subsequent stress- 
displacement behaviour. 

Fig. 8a and b shows the effect of the failure strain of 
the fibre on the stress-displacement (S-D) curves for 
the case of splitting and transverse failure, respect- 
ively. In both cases the fibre distribution is considered 
to be rectangular with a cutoff angle of 10 ~ and the 
bond and frictional shear values are 100 MPa and 
10 MPa, respectively. The fibre strain levels were 0.01 
and 0.02. As expected, the maximum stresses are pro- 
portional to the failure strains, and at large dis- 
placements the curves shift to higher displacement 
levels. 

Fig. 9a and b reveals the effect of fibre distribution 
on the S-D curves when the shear values are un- 
changed from the above values and the failure strain is 
fixed at 0.01. Rectangular distributions with max- 
imum misalignments of 5 ~ and 10 ~ and a parabolic 
distribution with a cutoff angle of 10 ~ are studied. 
Fig. 9a shows that the maximum stress and the shape 
of the S-D curves at small displacements are markedly 
affected by the distribution for the case of splitting 
failure. In the case of transverse bridging, the fibre 
failure occurs abruptly at very small displacements. 
Broader fibre distributions tend to shift the S-D 
curves to higher displacements. There is a suggestion 
some misalignment may be beneficial in increasing the 
maximum stress level. 

The effect of the frictional stress is given in Fig. 10a 
and b, fixing the bond shear strength at 300 MPa, the 
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Figure 8 The effect of fibre crack opening resisting stress for the case 
of a rectangular distribution having a 10 ~ cut-off when the fibre 
failure strains are 0.01 and 0.02 and when mean fibre direction is 
(a) normal to the applied stress, or (b) parallel to the applied stress. 

fibre failure strain at 0.01, and the fibre distribution to 
be rectangular with a 5 ~ cutoff angle. The frictional 
stress levels that were examined are 30 MPa, 3 MPa, 
and 0.3 MPa. Fig: 10a shows that in the splitting 
mode the S-D curves become broader and have lower 
maximum stress values as the frictional shear levels 
decrease. The decrease in the maximum stress is even 
more pronounced for transverse cracking, as seen in 
Fig. lOb. The peak stress when the shear stress is 
3 MPa is about half of that when the shear stress is 
30 MPa. The curves also shift to higher displacement 
values. 

Finally, the effect of the strength of the shear bond is 
examined for the case when the frictional stress is fixed 
at 3 MPa, the other parameters being the same as just 
discussed. The shear bond values are 300 MPa, 
30 MPa, and 3 MPa. Fig. l l a  shows that the S-D 
curve is unchanged for the values 300 MPa and 
30 MPa, but a very pronounced change in the shape of 
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Figure 9 The sensitivity of the crack bridging stress on the degree of 
fibre misalignment is given for various indicated statistical distribu- 
tions for cases where the mean fibre direction is (a) normal to the 
applied stress, or (b) parallel to the applied stress. 

the curve and a lowering of the maximum stress re- 
sults when the bonding  stress is reduced to the level of  
the frictional sliding shear stress. For  the parameters  
chosen there is little effect on the transverse strength 
related to the debonding  shear strength, as can be seen 
in Fig. l lb .  

In  summary,  aside from the effect of  the fibre 
strength, the above results indicate that  when the 
fibres run predominant ly  transversely to the crack 
face, the frictional shear stress has the greatest effect 
on  the S - D  behaviour.  However,  when the crack runs 
parallel with the mean direction of the fibres, almost  
all of  the parameters  have a significant effect on the 
S - D  curve. 

5.2. C o m p a r i s o n  w i t h  e x p e r i m e n t  
The most  s t raightforward experimental test of the 

912 

l .~a = 3 x 108 
g*f = 0.01 

100 Oma* = 5~ 
/ 

o w 

0 Microns 1000 
(a) 

1:a=3 x 108 

S*ma . = 0.01 

Ornax = 5 0  

1 " q = 3 x  10 7 

(3" 

~" ' = 3 x 10s3 x 1051]1t1]111 

0 
0 2 

(b) Microns 

Figure 10 The effect of the fibre-matrix frictional shear stress on the 
dependence of the bridging stress on the crack opening is shown for 
the cases where the mean fibre direction is (a) normal to the applied 
stress, or (b) parallel to the applied stress. 

present model  would be to apply unidirectional ten- 
sion on a composi te  having a single crack transverse 
to the stress axis. However,  producing a single matrix 
crack can be achieved in practice more  readily, if  the 
specimen is tested in 3-point bending, especially when 
failure occurs by splitting. Such tests have been 
performed on glass fibre-reinforced epoxy matrix 
composites and on graphite fibre-reinforced glass 
composites [1]. The results from those tests are 
compared  below with the results from the present 
model. 

In  many  such cases, once the crack forms under  
continued displacement the two halves of  the speci- 
men rotate a round  the axis of the center load in 
a hinge-like manner.  This behaviour  is favoured when 
the matrix is a hard non-yielding brittle material, and 
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Figure l l  The effect of the fibre-matrix debond shear stress % on 
the dependence of the bridging stress on the crack opening is shown 
for the cases where the mean fibre direction is (a) normal  to the 
applied stress, or (b) parallel to the applied stress. 

the crack runs parallel to the average direction of the 
fibres. When such a hinge-like behaviour occurs, the 
method given in Appendix D relates the applied 
bending force to the bridging tensile stress at the crack 
site farthest from the hinge axis. At that location the 
separation between the crack faces is twice he, and 
from simple geometric considerations is given by 

2hf = 4b'z'/L' (41) 

where L' is the span length, b' the height of the speci- 
men, and z' is the displacement at the center load 
point. Thus, the tensile stress S can be determined as 
a function of hf .  The maximum in the calculated stress 
Smax occurs at hmax, which is the value of hf when the 
applied load is a maximum. In favourable cases 
S . . . .  hm,x, and the work of fracture (WOF) can be 
determined. The latter is obtained by integrating 
S with respect to h~. 

Such a clean hinge-like matrix failure is suppressed 
if a large fraction of the bundles bridge the crack at 
large crossing angles. In this case the crack often does 
not propagate cleanly from the top to the bottom of 
the bar; multiple cracking and matrix crumbling at the 
center loading site may also occur. Such bend test data 
cannot then be reliably converted into equivalent ten- 
sile test results. At best, a crude estimate of Sm,x may 
be inferred using simple beam equations; a similar 
estimate of WOF may be inferred from the load-dis- 
placement curve. 

Information regarding the crack-bridging stresses 
at small crack openings may remain hidden when an 
initially uncracked sample is tested at a constant dis- 
placement. A threshold displacement is needed in 
order to raise the stress level enough to produce 
I-7, 11, 12] the matrix crack. Thus, the crack-bridging 
stress cannot be directly measured when the displace- 
ment is less than the threshold value. 

Not all of the values for the parameters needed to 
calculate the crack opening versus the applied stress 
dependence may be known, as was the case for the two 
sets of data given below. Instead, the problem was 
inverted, i.e. we sought to infer the values of missing 
data from the "best" fit of the calculated to the experi- 
mental observations. Specifically, the data that was 
missing were the values of Zd, Zf, and the degree of 
misalignment. Furthermore, the bundle size and fibre 
failure strain were only known approximately. 

The procedure for obtaining bounds on the values 
of these unknown parameters was to estimate initially 
the bundle size, failure strain, and misalignment cut- 
off angle. Combinations of ~d and ~f were then system- 
atically scanned to search for the minimum overall 
deviation between the calculated and the observed 
results. The trial values of zd and rf that produced the 
least deviation were then fixed; trial values for the 
failure strain, bundle size, and cut-off angle were sim- 
ilarly scanned. This complete cycle was then repeated 
until the deviation of the calculated from the observed 
results was minimized. 

The overall deviation q was defined as the sum of 
the squares of the relative deviations, i.e. 

~. 1-Mi(obs.) - mi(trial)] 2 
(42) 

q = mi(obs.)Mi(trial) i = 1  

where Mi represents the measures of interest, e.g. the 
maximum bridging stress S . . . .  the crack opening 
when the stress was maximum h . . . .  the crack opening 
when the stress had dropped to half of the maximum 
value So.5, and the work of fracture WOF. 

5.2. 1. Unidirectional graphite fibre-reinforced 
glass composite 

The detailed specifications of this composite supplied 
through the kind cooperation of the Corning Glass 
Works have been previously reported [1], along with 
the results of its force-displacement behaviour when 
subjected t o  a three-point splitting mode test. Only 
those details relevant to the a priori estimation of its 
fracture response are presented here. 
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5.2.1,1. Experimental data. The matrix was 
a borosilicate glass, and the nominal properties of the 
graphite fibres are diameter 8 ~tm, Young's modulus 
320 GPa, and failure strain 0.58%. The properties of 
the matrix are Young's modulus 91 GPa, failure strain 
0.08%, and Poisson ratio 0.20. The composite con- 
tained 48 volume per cent of fibre reinforcement and 
exhibited a flexural strength of 585 +_ 35 MPa and 
a Young's modulus of ~ 170 GPa. 

Chemical dissolution of the matrix glass revealed 
the fibres to be grouped into bundles having elliptical 
(0.4 x 1.2 mm) cross sections. Tests on extracted indi- 
vidual graphite filaments gave failure strains of 
1.1 7- 0.2% when tested over short gauge lengths [13] 
of the order of 100 fibre diameters. From'this scatter in 
relative strength and from the ratio of the mean failure 
strains at short gauge lengths relative to the conven- 
tional 20 mm gauge length, a Weibull modulus of 
about 5 for the strength of the filaments was deduced. 

The composite was cut into bars for single-edge 
notched beam testing. The mean direction of the fibres 
was parallel to the height. The test span was 50.8 ram, 
the thickness 5.1 mm and the height 22.2 mm. A rep- 
resentative force versus displacement curve is shown 
in Fig. 12. In duplicate tests the mean maximum load 
was 313 N at a center bar displacement of 0.10 mm. 
The work of fracture, as determined from the area 
under the curve over a displacement range of ten times 
the displacement at the maximum load, was 
470 J m -2. After testing the specimens remained 
loosely bridged by bundles that had not yet failed. 
Most of the unfailed bundles appeared to lie nearly 
parallel to the crack plane. This behaviour closely fits 
the criteria for using the "hinge" model. 

3 0  

"o 
t~ 
o _J 

2 0  

lO 

0 I I 
0 .0(  0 . 2 5  0 . 5 0  

Def lec t ion  (mm) 

Figure 12 Experimental data  for the splitting mode failure of 
a nominally unidirectional borosilicate glass matrix composite re- 
inforced with 45 volume per cent of graphite fibre. 
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The "hinge" model (see Appendix D) gives the infer- 
red maximum bridging stress, after the occurrence of 
matrix cracking, to be 1.9 MPa at a separation be- 
tween the crack faces of 40 ~tm. The stress drops to half 
of the maximum value at a crack opening of 190 ktm. 

In a second experiment, specimens of the same 
composite were cut into bars with the fibres parallel to 
the long axis. Four  bars 2.92 mm in height were tested 
in a 3-point bend mode over a 25 mm test span. The 
mean breaking stress derived from elementary 
strength of material equations was 445 _+ 25 MPa, 
and the work of fracture was 80 _+ 20 kJ m -  2. Unfor- 
tunately, extensive buckling occurred on the com- 
pressive side of the test bar, invalidating the use of 
Appendix D to translate the experimental results into 
"equivalent" tensile test data. 

5.2.1.2. lnferred parametric values. Most of the re- 
quired physical and mechanical properties of the con- 
stituents, including the fibre failure strain, fibre bundle 
size, and fibre orientation, were approximately known; 
but there was no a priori information regarding the 
values of z~ or ~f. For  simplicity, a rectangular distri- 
bution of fibre orientations was assumed. The fact that 
the large elliptical bundles were comprised of a subset 
of smaller bundles introduced some ambiguity regard- 
ing which was the appropriate bundle size. Both sizes 
were considered in seeking which gave the best fit to 
the data. 

The data for the splitting mode of failure could be 
fitted with values of q ranging from 0.9 to 1.7 by 
varying the cut-off for the crossing angle, the shear 
strengths for debonding and frictional slippage, as well 
as the fibre failure strains over narrow ranges, as 
shown in Table III. 

The constancy of the calculated crack opening 
hmax corresponding to the maximum in the resisting 
stress Smax is an artifact caused b y  the discreteness of 
the steps in the computer code by which the crack is 
opened. The increments in the opening corresponded 
to 15 % of the previous opening. The input parameters 
were scanned similarly in discrete increments, e.g. 0.5 ~ 
for the cut-off angle, 0.0005 for the fibre failure strain, 
and a factor of 1.8 for increases of ~d and zf. Assuming 
that the small sub-bundles were the crack bridging 
entities resulted in calculated values for the fracture 
data that were in gross disagreement with the experi- 
mental values. However, assuming that the bundles 
were 0.4 x 1.2 mm, which is the measured size given 
above, the results shown in Table III were obtained. 

5.2.2. Unidirectional E-glass fibre-reinforced 
epoxy 

This composite was also reported previously [1] and 
consisted of 0.6 volume fraction of nominally parallel 
multifilament strands of 10~tm diameter E-glass 
filaments in an epoxy matrix. Because the composite 
was produced by pultrusion, the strands were ex- 
pected to be nearly parallel. Microscopic examination 
showed that the strands were about 1.2 mm in dia- 
meter, but appeared to be made up of bundles about 
0.2 mm in diameter. The Young's modulus of the 



TABLE III Comparison between experimental results for splitting failure of a graphite fibre/borosilicate glass composite and the 
computed expected results 

Input parameters Fracture data 

d? g* ~a re hmax Sma, WO F 
(MPa) (MPa) (#m) (MPa) (J m -2) 

Experimental 

0.011 • 40 1.9 470 

Computed 

6 0.0125 10 3 65 0.7 470 
6 0.0130 10 3 65 0.7 730 
6 0.0135 10 3 65 0.7 750 
6.5 0.0115 10 3 50 0.8 560 
6.5 0.0115 10 6 50 0.8 370 
6.5 0,012 10 3 50 0.8 580 
7 0.011 10 3 39 0.8 510 

TABLE IV Comparison of calculated versus observed results for 
an E-glass fibre-reinforced epoxy composite tested in splitting mode 

Input parameters Results 

e* Xd zf hmax Smax WOF 
(MPa) (MPa) (~tm) (MPa) (kJm -2) 

Experimental values 

150 3.8 1.15 

Values calculated from model 

8 0.024 16 13 245 3.8 2.17 
8 0,024 25 13 245 3.1 1.76 
8 0.024 25 20 195 3.2 1.40 
8 0.0235 25 20 195 3.2 1.32 
7.5 0.024 25 20 195 2.5 1,20 

fibres is 70 GPa  and of the resin was estimated to be 
1.7 GPa. The failure strain of the glass fibres was not 
known, but values in the range 0.02-0.03 are expected. 

The test bar was subjected to a 3-point loading at 
a span length of 75 mm. The bar was 19 mm in height 
and was notched to a depth of 1.9 mm at the midspan. 
The fibre orientation was parallel to the height, so that 
failure corresponded to the splitting mode. The force 
dropped discontinuously from a maximum value of 
141 N (Newtons) to 101 N and then increased again to 
a second maximum of 103 N at a center beam dis- 
placement of 0.20 ram. Using the deconvolution pro- 
cedure given in Appendix D indicates that Smax is 
3.8 MPa, hmax is 150 gm, and WOF is 1150 Jm -2. 

The values of the parameters leading to the best fits 
to the data are given in Table IV, based on a bundle 
size fixed at 0.2 mm diameter. 

6. Summary and concluding remarks 
This paper proposes that (1) even nominally unidirec- 
tional arrays of reinforcing fibres are typically com- 
prised of groupings (bundles) of parallel fibres, (2) 
these bundles can behave as if they were larger dia- 
meter reinforcements, (3) the spatial orientation of 
bundles generally deviates statistically from the nom- 
inal mean direction, (4) bundles that cross the crack 

plane at an angle other than normal or parallel to the 
plane must flex as the crack opens, and (5) the compo- 
nents of bridging force that resist crack opening arise 
from stretching of the fibre bundle and from bending 
of the bundle. 

In other respects the composite is modelled in the 
usual way, except that the misorientation may affect 
certain details. The fibres and bundles are assumed to 
be adhesively bonded to the matrix, requiring a char- 
acteristic threshold shear stress to be applied at the 
interface in order to cause debonding. Once debon- 
ded, slippage of the bundle relative to the matrix is 
allowed. Such slippage is assumed to be resisted by 
a fixed characteristic interracial frictional shear stress. 
The fibres fail at a strain level dependent on the length 
over which the fibre is debonded, in accordance with 
expectations based on Weibull statistics. The contri- 
bution of pullout is explicitly considered in the case of 
fibres having discrete lengths and is estimated using 
Weibull statistics for the case of continuous fibres, 
using the model previously given by Sutcu [14]. 

Ideally, in order to test this theoretical model the 
values of the parameters must be known independ- 
ently. In addition, measurements of the crack opening 
as a function of an applied tensile test are required. 
Such complete information is not available at this 
time. However, some related 3-point bend test 
measurements have been made, which in favourable 
cases can be manipulated to yield the underlying re- 
sponse under pure tensile test conditions. 

By adjusting the values of those parameters that 
were not independently known, it was possible to 
obtain an approximate fit to the experimental data 
obtained on a carbon fibre/borosilicate glass com- 
posite as well as on a E glass/epoxy composite. By this 
means the missing values could be inferred. The results 
obtained in this way appear to be physically 
reasonable. 

Perfect fits within experimental and/or  computa- 
tional error were not obtained. In particular, the max- 
imum fibre-crossing angle for best fit was greater than 
expected from comparison with the actual specimen. 
One possible reason is that the present model assumes 
that the fibre bundles are free to act as independent 
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cantilevers. In a densely packed composite the bundles 
are likely to interfere with the flexural response of 
adjacent bundles. As a result, the neighbouring fibres 
will provide mechanical support to any given bundles, 
especially in the region where the bundle emerges from 
the crack face. Hence, the model underestimates the 
flexural stiffness and probably also the tensile strain in 
the crack-bridging region. Computationally, such an 
underestimate can be compensated by an increase in 
the bundle-crossing angle. 

In addition to providing a basis for calculating the 
ultimate crack bridging strength and WOF, modelling 
the dependence of the bridging stress on the crack 
opening should be useful in treating finite cracks in 
which the crack opening varies with distance from the 
matrix crack tip, and the crack opening in turn de- 
pends on the bridging stress. 

Finally, it is hoped that this comprehensive model 
provides insight into the behaviour of imperfect com- 
posites. Undoubtedly, as more data and observations 
of the fracture process become available, additional 
phenomena must be included. Such work is essential 
for testing the validity of the proposed concepts. 

Appendix A. Stress and displacements 
for simple concentric 
cylinder systems 

Some results presented through Section A1, have been 
previously given (e.g. [5, 6]), but are summarized here 
for ready reference. 

Consider a unidirectional composite containing vf 
volume fraction of fibres, which is subjected to a 
uniaxial tensile stress S parallel to the fibres and a cor- 
responding strain e c ( ~ )  = S/Ec. (E~ is the Young's 
modulus of the composite in the fibre direction.) Let 
the ends of the fibres emerge from a free surface, such 
as in the case of a transverse matrix crack bridged by 
the fibre. Force balance requires that the emerging 
fibres carry a stress S/vf, which is progressively trans- 
ferred to the matrix with increasing distance x from 
the free surface. 

Correspondingly, the strain in the fibres progres- 
sively decreases from af(0) at x = 0 to the background 
strain af(oe). The deviation of the strains in the fibres 
and in the matrix from the background strain results 
in a net displacement u of the fibres relative to the 
matrix at the free surface. That is 

= fo { [ a ~ ( x )  - a ~ ( o o ) ]  
u 

-- [am(X) -- ~m(OO)']}dx 

= ;0 m [af(X) -- am(X)" ] dx (A1) 

The quantity a f (x ) -  af(oo) is the departure of the 
fibre strain from its value far from the free surface and 
will be abbreviated to rlf(x ). Force balance requires 
that the fibre and matrix mean stresses sf(x) and SIn(X) 
obey 

Sf(X) Uf "4- Sm(X-)V m = S (A2) 

This condition in turn relates am(X) to gf(x) and 
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leads to 
U ~- ( E c / V m E m ) U  f (A3) 

The incremental elongation of the fibre u at the free 
surface (crack face) relative to that at the same loca- 
tion had the composite remained crack-free is 

Uf ~- t ~176 tie(X) dx (A4) 
J o  

A.1. Fibres c o h e r e n t  wi th  matrix 
The difference between the fibre tensile strain near the 
crack and that far distant, when the fibre is coherently 
bonded to the matrix, is given by 

d2q(x)/dx 2 = kErl(X) (A5a) 

For infinitely long fibres the solution 

q(x) = q(0)exp( -kx)  (A5b) 

is applicable to the cases of load transfer between 
a broken fibre and an unbroken matrix or between 
a cracked matrix and an intact fibre. All models con- 
sider the fibres to be concentrically surrounded by the 
matrix. The relative radii of the fibres and the matrix 
are defined by the volume fractions of these two con- 
stituents. The case of the broken fibres was first 
treated by Cox [13]. The inverse case, in which intact 
fibres bridge a matrix crack, is discussed next. 

The BHE [7] model assumes a shear stress depend- 
ence in the matrix given by 

"tin(r, x)/rc(a,x) = ( / ) f / V m ) ( R  2 - r2)/ar (A6a) 

where Zm is the shear stress in the matrix, z(a, x) is the 
shear stress at the fibre-matrix interface, r is radial 
distance and R is the outer cylindrical radius defined 
through vf = (a/R) 2. 

This dependence satisfies the boundary conditions, 
namely at r -- a, the matrix shear stress matches the 
fibre shear stress, at r - - R ,  the matrix shear stress 
vanishes, and at all values of r force equilibrium is 
maintained. The model leads to a tensile stress in the 
matrix that is independent of radial distance r. The 
results are then translated in terms of another simpler, 
but energetically equivalent, model. The computed 
value of the exponential decay constant is 

k k 1 I ( a ~  v~--fmt / = = + (1 + Vm) 

R' a 
l n ( N / ~ ) ] /  (A6b) 

in which R' is a mean effective matrix radius given by 

In = - (21nvf  + v=(3 - Vf))/4VZm (A6c) 

I offer an alternative model, which in addition re- 
quires that the matrix axial strain at r = a is con- 
strained to match that in the fibre. The local shear 
stress field around a given fibre is approximated by the 
three parameter law in which p is an abbreviation for 
r/R 

�9 m(r,x)/z(x) = colnp + cl/p + c2/p = (A7) 



and where the coefficients also satisfy the conditions 
used in the preceding model. The resultant values of 
the coefficients are 

�9 CO 

C l  

and 

= l-1 4- 2(Em/Ef)] /[1 - p 4- (2 - p)lnp] 

(A8a) 

= {1 + [ 1 - 2 ( E m / E f ) ] l n p } /  

[1 - p + (2 - p) lnp]  (A8b) 

C 2 : - -  C 1 

leading to the result 

k = k2 = F ! E m / E ' ) p - = ( c ~  + c l" )P2/2] /a  
L (1 + Vm)(CoJ 0 + c l j l )  . J /  

(A8c) 

in which jo = p(1 + lnp) - 1 and j l  = 1 - l ip  + lnp. 
The greatest difference between kl and k2 is only 

35%, which occurs when Em/Ef = 1 at vf -,~ 0.1. Argu- 
ably, k 2 should give a better approximation to the 
geometric decay of shear stress, inasmuch as the 
matrix and fibre strains at  r = a are forced to be in 
registry. However,  both models are one-dimensional 
approximations to a two-dimensional problem. Be- 
cause the two models are in good agreement, and 
because the expression for k~ is simpler, we use k~ 
when explicit evaluation of k is required. 

The functional dependencies of the fibre displace- 
ment u at x = 0 and the interfacial shear stress z(x) do 
not depend on the specific values of k. The displace- 
ment u is 

Uf = q(O)/k (A9a) 

The interfacial shear stress z(x) is given through 

"c = aEf(de f /dx) /2  
o r  

z(O) = kaEfq(O)/2 (A9b) 

If we assume that debonding initiates when to = za, 
where Zd is a material parameter, then 

q* = 2za/kaEf (A10a) 
and 

u* = 2Zd/k2aEf rl*(O)/k (A10b) 

where 1]* is an abbreviation for 11" (0); q* and u* are 
critical strain and displacement parameters that define 
the onset of debonding at the fibre wall, unless the 
fibre breaking strain intercedes before Equation A9 
can be satisfied. 

A2. Loss of coherence of continuous fibre 
bundles 

In the slipped region the fibre stress and strain as 
a function of distance x from the crack face and the 
frictional shear stress zf are given by 

S f ( X )  = S f ( 0 )  - -  2"~fx/a (Alla) 

from which one can obtain 

l ] ( x )  = 1"1(0 ) - -  ( 2 " r f / a E f ) x  = 1"1(0 ) - -  C x  

(A1 lb) 

the abbreviation C being definable by inspection. Let 
the value of x at the boundary between the bonded 
and the debonded regions, where q (x) = q*, be desig- 
nated L', which is then given by 

L' = [ q ( 0 ) -  q * ] / C  (A12) 

For values of x > L', let x = L' + z. Then 

q(x) = q * e x p ( - k z )  (A13) 

from which the elongation in the slipped region is 
obtainable as 

b/f,  s ~ -  r q 2 ( 0 )  - q ' 2 ] / 2 C  (A14) 

The elongation over the range x > L' must be added 
to Ue, s to give the total elongation uf, i.e. 

uf = Ue, s + q * / k  (A15) 

However, once slippage initiates, the relative contribu- 
tion of the coherent region to the total elongation 
becomes negligible. 

A3. Loss of coherence of discontinuous fibre 
bundles 

We now consider a bridging discontinuous fibre 
bundle. Let its nearest end to the crack plane, as 
measured along its axis, lie a distance Le, i from the 
crack plane. The distance along the fibre 
relative to the crack face is designated by x, as 
shown schematically in Fig. 6. If fibre pullout occurs, 
then the end of the fibre moves from i t s  original 
position. The new position can be calculated as 
follows. 

Let the length of the bundle that spans the open 
crack from the crack plane to the crack face be L. 
Then the length of the embedded fibre to the nearest 
end is X = Lf, i - L. ,Let the length of the debonded 
region of the fibre be Ls. We first treat the simple case 
in which there is only frictional coupling between the 
fibre and the matrix. Later we examine how adhesive 
bonding modifies the pullout process. 

A3. 1. No fibre-matrix bonding 
In the absence of fibre-matrix bonding, the axial stress 
at the embedded end of the fibre is zero. Thus, there is 
a small region in which the fibre strain is less than the 
applied strain e(oo), i.e. in  which I1 < 0. We shall 
neglect this effect and simply set r I equal to zero at the 
fibre end. Equations A10a and A10b remain valid if "cf 
replaces Ta, because slippage can only occur if T(0) 
exceeds Tf. In accordance with Equation 12, the length 
L' of the slipped region increases with increasing 1"1(0) 
until L' = Lf, i -- Xi, which defnes the onset of pull- 
out. Any further increase of the crack opening causes 
Xi to diminish. Thus, using Equation A12 the max- 
imum value of q (0) is CLf, i. As the crack opens further 
q (0) is given by CXi,  and q (x) is simply 

q(x) = C(Xi - x) (A16a) 

where Xi is related to Lf, i and L through 

1 

Xl = Lf, i -- L + q(x) dx (A16b) 
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A3.2. Fibres initially bonded to the matrix 
When the fibres are initially adhesively bonded to the 
matrix, the shear stress level must reach zd to initiate 
debonding. In accordance with Equation 10b, this 
condition is satisfied when L > u*. We first consider 
the case in which the fibre end is free of the matrix. The 
demarcation between the bond and the debonded 
regions is termed the Fibre-Matrix Debond Site 
(FMDS), as shown in Fig. 6. 

Once debonding has commenced, the fibre strain 
decreases linearly with distance x from the crack face 
according to 

q(x) -- q(L~) = C(L~ - x) f o r x < L ~  (A17) 

where Ls is the value of x at the FMDS, and q(L,) is 
the fibre strain at the FMDS which satisfies the 
debonding condition. For x > Ls, q (x) is governed by 
Equation A5a. Introducing the boundary conditions 
z(x = L~) = "E d and r l (Lf ,  i) = 0, leads to 

q(Ls) = 2zdtanh(kZ)/(kaEf)  (A18) 

where Z is an abbreviation for Lf,  i - -  Ls.  Thus, as the 
FMDS approaches the end of the fibre, q(L~) van- 
ishes, so that the condition for the onset of fibre 
pullout is the same as if the fibre had been initially 
debonded, although the stress needed to initiate fric- 
tional sliding is greater. 

We now consider the case in which the end of the 
fibre is bonded to the matrix. A tensile stress S*nd at the 
end of the fibre is postulated to be required for end 
debonding, i.e. Y l ( L f ,  i )  = Se*nd/g f = Yl*. Introducing 
this boundary condition into Equation 5a leads to 

rl(L~) = rl*/cosh(kZ) + 2Zd tanh(kZ)/(ka Ef) 

(A19) 

This relationship indicates that as L~ approaches Lf. i, 
rl(L~ ) increases and approaches rl*. Introducing this 
into Equation A17 indicates that q(0)just  prior to 
pullout is greater by the increment rl* than is the case 
for no end bonding. However, once the end bond is 
broken, then the q(0) value must drop discontinu- 
ously to the value given by Equation A17. 

Appendix B. Estimation of the 
dependence of hm on hf 

In misaligned composites the stress and strain fields of 
one fibre will be perturbed by the presence of its 
non-parallel neighbours. Hence, the conditions for 
static equilibrium throughout the composite cannot 
be as simply expressed as by Equation A2 in 
Appendix A, which refers to a unidirectional com- 
posite with the fibres normal to the applied stress and 
perpendicular to the crack. Furthermore, in such an 
idealized composite, the fibre orientations also co- 
incide with the direction of the principal Young's 
modulus of the composite. These simplifications allow 
the displacements of the fibre and the matrix to be 
determined in a straightforward manner. 

This Appendix B offers an approximate model for 
the displacement of the matrix at the crack face when 
the reinforcing fibres are misaligned. The assumptions 
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are: (1) the normal to the crack is an axis of rotational 
elastic symmetry; (2) the response of the composite can 
be synthesized from the separate responses of uni- 
directional composites in which the fibres are inclined 
as they cross the fracture plane; (3) the weighting 
functions are the same as those that describe the 
composite microstructure; and (4) the elastic constants 
used in assumption (2) are those of the composite as 
a whole. 

The elastic properties of a fibre-reinforced com- 
posite are dependent on the fibre orientation. Al- 
though the stiffness of the matrix can vary due to 
locally varying triaxial constraints, we treat the matrix 
as elastically isotropic and unaffected by being in the 
composite. Accordingly, we arbitrarily ascribe the ori- 
entational dependence of the Young's modulus Ec for 
the composite on an orientational dependence of 
E f , e f f ,  the "effective Young's modulus" of the fibres 
through 

E c = / ) f E f ,  ef f + vmE m (B1) 

where Eo is the Young's modulus of the composite 
when the fibres are oriented at the angle 0 relative to 
the crack plane. The uniaxially applied traction is 
taken to be normal to the crack plane. This modulus 
may be given by an appropriate model or may be 
experimentally determined. 

In the expressions below, S, u, v, and E have their 
usual meanings, as do the subscripts f m, and c; x is 
distance from the crack face. Quantities measured 
normal to the crack plane are primed, whereas those 
parallel to the fibre axis are left unprimed. 

Consider first an unidirectional composite in which 
the fibres (bundles) are inclined at the angle 0 relative 
to the crack plane. The area fraction of the fibres at the 
crack face is the same as vf for the overall composite. 
Static equilibrium requires that in the direction nor- 
mal to the crack face 

vfS((x) + VmS~(x) = S'~ (B2a) 

Similarly, in the direction parallel to the fibres 

vfSf(x) + vmS(x) = Sr (B2b) 

For simplicity we assume proportionality between 
the macroscopic stresses and strains in the composite 
normal to the crack plane, as well as between the local 
stresses and strains of the constituents parallel to the 
fibre. Thus, Equations B2 and B3, respectively, can be 
expressed as 

vfE;a[(x) + E~nvm~m(X) = Es c ( B 3 a )  

and 
vfEf 'gf(X) + EmVmgm(X ) = E c E  c (B3b) 

Continuity requires that far from the crack 
ef(oo) = Sm(OO) = ec and s~(oo) = d ( o o )  = e'c. From 
these equalities it follows 

t t vfE[ + vinE m = E c (B4a) 
and 

vfEf + vmEm = E c (B4b) 

Equation B4b represents the simple rule of mixtures 
inasmuch as the stress S is parallel to the fibres; Ef and 
Em represent the usual material constants. However, 
the situation is different in the case of Equation B4a. 



Recalling that E m is postulated to be isotropic and 
constant gives Em = Em. The composite modulus E" is 
a strong function of the fibre orientation relative to 
that of the applied stress S'. Approximate expressions 
for this dependence have been given [15]. We recon- 
cile the orientation dependence in Equation B4a by 
interpreting E; as a direction-dependent material con- 
stant such that the equation is obeyed. That is, 

E; = ( E ; ( 0 ) -  l)mEm)/l) f = Ef, ef f (B5) 

In order to relate hm to hf, it is necessary to translate 
the various strains to corresponding displacements. 
Making use of the equality of the strains far from the 
crack, one can write 

vtE'f(O)(e'f(x) - e}(oe)) + vmEm(em(X) em(O0)) = 0 

(B6) 

Integration with respect to x from 0 to oe leads to 
t = r t 

U m - -  ( v f E f ( O ) / l ) m ) t l  f . (B7) 

in which u~ is the contractive displacement of 
the matrix at the crack face normal to the crack, 
i.e. hm. Correspondingly U~ is the extension of the fibre 
within the matrix resolved normal to the crack, or 
u~ = U sin 0, where U is the extension in the direction 
of the fibre. In Equation 13 it was shown that U = 
hf sin 0. 

Thus, 

( h m / h f )  0 = - ( v f E [ ( O ) / v m )  sin 20 (B8) 

Finally, we postulate 

h m / h  f = ( h m / h r )  = f~ ( h m / h f ) ~  ( B 9 )  

Io/2 Z(O) dO 

in which Z(0) is the weighting function for the number 
of bundles crossing a unit area of crack surface at the 
angle 0, as discussed in Section 4.1. Inasmuch as hf is 
an independent variable, the above equation allows h m 
and h to be determined. 

Appendix C. Relationship between 
misalignment angle 
and crack crossing angle 0 

Consider a population of fibres that is distributed 
symmetrically around an axis that represents the 
mean direction of the overall population. The distri- 
bution can be considered in terms of a projection onto 
a spherical shell in which the axis is a ray emanating 
from the center of the sphere onto the surface. The 
center of the sphere coincides with the origin of 
a three-dimensional Cartesian coordinate system with 
axes X, Y, and Z. The orientation of the individual 
fibres can also be represented by rays that intersect the 
spherical surface. The angular deviations of the indi- 
vidual fibres from the axis are characterized by the 
cone angle ~ with respect to the axis. The crack plane 
and the X Y plane coincide. The angle that the axis 
makes with respect to the crack plane is 4, and the 
angle that the fibres make in crossing the crack plane 
is qb. The various fibre distributions are defined as 
follows: 

Q(dp) = number density of fibres projected on the 
spherical shell per unit solid angle at angle ~ from 
the axis of symmetry: 

P(qb) = total number density of fibres that deviate 
from the axis of symmetry by an angle ,~, 
P(qb) = Q(dp) sin ~; 

f(qb) = number density of fibres that cross the fracture 
plane at an angle qb. 

When ~t = 0, the axis of symmetry lies in the X Y 
fracture plane, and we arbitrarily set that axis to 
coincide with the X-axis. When ~ = re/2, the axis of 
symmetry is normal to the fracture plane and co- 
incides with the Z-axis. We discuss this simpler case of 
qt = r~/2 next. 

C1. Axis of s y m m e t r y  normal  to crack plane  
Fibres crossing the fracture ( X Y )  plane at a given 
angle 0 lie represented by a cone produced by rotating 
a line about the Z-axis inclined at the angle qb to the 
X Y plane. Hence, when ~ = re/2, 0 = r~/2- 0, i.e. 
dO = re/2 - 0, so that f(qb) is simply 

f(?#) = P(x /2  - O) (C1) 

C2. Axis of symmetry lying in crack plane 
When the axis of symmetry does not coincide with the 
axis that defines 0, the translation from Q(qb) to f(0) 
requires the integration of Q over the surface of the 
sphere at constant crossing angle 0. Consider a surface 
area element defined by the spherical bands between 
6 and O + dO around the Z axis, and by qb and Op + dOo 
around the X axis. This element is given by 

sin 0 sin qb dO dqb 
dA = (C2) 

~ / ( 1  - c o s  2 ~ - c o s  2 0 

Because of symmetry it is sufficient to consider only 
1 octant of the sphere. 

The total number N of misaligned fibres can be 
determined directly by integrating Q (qb) over the hemi- 
sphere defined by varying ~ from 0 to n/2, i.e. 

f 
n / 2  

N = 2r~ Q(qb)sinqbd~ (C3) 
o 

This quantity must be the same as by integrating Q(qb) 
over the 4 octants that comprise the hemisphere de= 
fined by varying 0 from 0 to ~/2, i.e. 

/ 2  r # 2  " 

j ~ / 2 - 0  , / c o s  2 , - c o s  2 o 

Note that integrating first with respect to 0 leads 
to C3. 

By inspection it can be seen thatf(e)  is given by the 
quantity within the curly brackets, i.e. 

S N = f(O) dO (C5) 

C3. Normal izat ion of d is t r ibut ion func t i ons  
The area on the crack plane intercepted by a fibre (or 
bundle) of radius a when it traverses the crack plane at 
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the angle 0 is na2/sin O. Thus the area intercepted by 
all fibres at that angle is proportional to f(0)/sin 0. 
The total area intercepted by all fibres of all orienta- 
tions is v times a unit area, where v is the volume 
fraction of fibres in the composite. That is, 

~/2 f(0) dO 
Kxa2jo sin0 = v (C6) 

where K is a normalizing constant to be determined 
from this expression. The actual number of fibres (or 
bundles) crossing the crack plane at 0 + dO is Kf(O). 
The normalized value of Q(qb) or P(qb) can be deter- 
mined similarly. 

Appendix D. Approximate procedure for 
translating bend test data 
into "equivalent" tensile 
test data for the case of the 
splitting failure mode 

The following simple model translates the main fea- 
tures of experimental 3-point bend test measurements 
into equivalent tensile test results. The quantities of 
particular interest are the maximum stress support- 
able by the bridging bundles and the spacing h corres- 
ponding to the maximum stress. We assume that in 
failing, the bend test specimen acts like a hinge. That 
is, the matrix is assumed to be completely cracked, and 
the two halves of the specimen, held together by the 
bridging fibre bundles, are considered to be rigid 
blocks that pivot around the top of the crack, at which 
point the center load acts. The crack face separation 
increases linearly with increasing distance from the 
pivot. At any given distance, the crack face separation 
increases with increasing downward displacement of 
the center load site. 

The magnitude of the crack opening is readily deter- 
mined using simple geometry. For a test specimen 
having a span of length L, height B, thickness C, and 
center load point deflection d, the crack opening h as 
a function of distance Y from the pivot is simply 

h(d, Y) = 2dY/L (D!) 

The load P at the centre of the bar is given by 
equating moments around the pivot and is 

4Cf2YSdr (D2) P - L 

in which S is the stress to be determined. By change of 
variable, using Equation D1 yields 

P - ~5 Jo hSdh (D3) 

which upon differentiation with respect to d and some 
manipulation gives 

P' = dP/dd = - 2 P / d  + 4B2CS/Ld (D4) 

and 
S(hmax) = L(P'd + 2P)/4CB 2 (D5) 

Thus, from the measured load, deflection, and the 
slope of the load with respect to the center point 
deflection, the stress as a function of crack opening 
can be calculated. Because at the maximum applied 
load, P = 0, the maximum stress occurs at the same 
deflection as the maximum in the load. By noting 
geometric similitude it follows that 

hma x ----- 2dB/L .(D6) 

Acknowledgements 
The help of Ms Paula Breslin and Mr David Raycroft 
in the preparation of the manuscript is acknowledged 
with pleasure and appreciation. The discussions 
with Drs David Duquette, Demitri Lagoudas, and 
Muzaffer Sutcu were very helpful and are much 
appreciated. 

References 
1. W.B. HILLIG, J. Mater. Sci. 29 (1993) 419. 
2. J. MORTON and G. W. GROVES, J. Mater. Sci. 9 (1974) 

1436. 
3. M. R. PIGGOTT, in "Load bearing fibre composites" 

(Pergamon Press, New York, 1980) p. 133. 
4. M. HETENYI, in "Beams on elastic foundation'! (University 

of Michigan Press, Ann Arbor, MI, 1948) p. 10. 
5. W.B. HILLIG, Ceram. Bull. 66 (1987) 373. 
6. M. SUTCU and W. B. HILLIG, Acta Metall. Mater. 38 (1990) 

2653. 
7. B. BUDIANSKI, J. W. HUTCHINSON and A. G. EVANS, 

J. Mech. Phys. Solids 34 (1986)167. 
8. G.A. COOPER, J. Mater. Sci. 5 (1970) 645. 
9. R.M. JONES, in "Mechanics of composite materials" (Hemi- 

sphere Publishing Corp., New York, 1975) p. 31. 
10. G.S. WATSON, J. Geol. 174, 5.2 (1966) 786. 
11. J. AVESTON, G. A. COOPER and A. KELLY, in Single and 

Multiple Fracture, The Properties of Fibre Composites Con- 
ference Proceedings (IPC Science and Technology Press, 
Guildford, UK, 1971) p. 15. 

12. D. B. MARSHALL, B. N. COX and A. G. EVANS, Acta. 
Metall. 33 (1985) 2013. 

13. H.L. COX, Brit. J. Appl. Phys. 3 (1952) 72. 
14. M. SUTCU, J. Mater. ScL 23 (1988) 928. 
15. R. M. JONES, "Mechanics of composite materials" (Hemi- 

sphere Publishing Corp., New York, 1975) p. 54. 

Received 30 July 1992 
and accepted 23 February 1993 

920 


